
Modern Assembly Language Programming
with the

ARM processor
Chapter 3: Load/Store and Branch Instructions



1 Introduction

2 Load/Store Instructions

3 Branch Instructions



ARM User Program Registers

r0
r1
r2
r3
r4
r5
r6
r7
r8
r9

r10
r11 (fp)
r12 (ip)
r13 (sp)
r14 (lr)
r15 (pc)

CPSR

Thirteen general-purpose registers (r0-r12)

The stack pointer (r13 or sp)

The link register (r14 or lr)

The program counter (r15 or pc)

Current Program Status Register (CPSR)



Hardware-Related Register Rules

All instructions can access r0-r14 directly.

Most instructions also allow use of the program counter (r15).

Specific instructions to allow access to CPSR.

r14, r15, and CPSR are “hardware special”.



CPSR

N Z C V Q
31 30 29 2728 2326 25 24 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

J GE[3:0] E A I F T M[4:0]

Negative: This bit is set to one if the signed result of an operation is negative,
and set to zero if the result is positive or zero.

Zero: This bit is set to one if the result of an operation is zero, and set to
zero if the result is non-zero.

Carry: This bit is set to one if an add operation results in a carry out of the
most significant bit, or if a subtract operation results in a borrow. For
shift operations, this flag is set to the last bit shifted out by the shifter.

oVerflow: For addition and subtraction, this flag is set if a signed overflow
occurred.



Conditional Execution

op{<cond>} operands

<cond> English meaning
al always (this is the default <cond>
eq Z set (=)
ne Z clear (6=)
ge N set and V set, or N clear and V clear (≥)
lt N set and V clear, or N clear and V set (<)
gt Z clear, and either N set and V set, or N clear and V set (>)
le Z set, or N set and V clear,or N clear and V set (≤)
hi C set and Z clear (unsigned >)
ls C clear or Z (unsigned ≤)
hs C set (unsigned ≥)
cs Alternate name for HS
lo C clear (unsigned <)
cc Alternate name for LO
mi N set (result < 0)
pl N clear (result ≥ 0)
vs V set (overflow)
vc V clear (no overflow)



Instruction Categories

Load/Store Instructions

Branch Instructions

Branch with Link (subroutine call)

Conditional Branches

Data processing Instructions

Arithmetic Operations

Logical Operations

Comparison Operations

Data Movement Operations

Multiplication Operations

Special Instructions

Pseudo-Instructions



Simplified Computer

System Bus

CPU

I/O Devices

Memory



Pointers and Addresses

Data must be copied to a register before it can be used in any calculation,
but there are not many registers.

In assembly, almost all data is accessed using its address in memory.

1 Every memory location has an address.

2 A pointer is a variable that holds an address.

3 A pointer can be stored in a register (short term) or in memory (long term).

4 Before it can be used to access the data it points to, a pointer variable must be
loaded into a register.

The address of a statically allocated variable, x, can be loading using the following
pseudo-instruction:
ldr r4, =x

This creates a temporary pointer variable in register r4, which can then be used to
load data from variable x.



Addressing Modes

Most of the Load/Store instructions use an <address> which is one of the ten options
listed below.

Syntax Name

[Rn] Register immediate
[Rn, #±<offset_12>] Immediate offset
[Rn, ±Rm] Register offset
[Rn, ±Rm, <shift> #<shift_imm>] Scaled register offset
[Rn, #±<offset_12>]! Immediate pre-indexed
[Rn, ±Rm]! Register pre-indexed
[Rn, ±Rm, <shift> #<shift_imm>]! Scaled register pre-indexed
[Rn], #±<offset_12> Immediate post-indexed
[Rn], ±Rm Register post-indexed
[Rn], ±Rm, <shift> #<shift_imm> Scaled register post-indexed

<shift> can be any of the shift or rotate operations that will be covered later.

[Rn] is just shorthand notation for [Rn, #0]



Load/Store Operations

Operations:
LDR / STR Load/Store 32 bits
LDRH / STRH Load/Store 16 bits unsigned
LDRB / STRB Load/Store 8 bits unsigned
LDRSH Load 16 bits signed
LDRSB Load 8 bits signed

Syntax:

<Opcode>{<cond>}{<size>} Rd, <address>

Examples

1 ldrsh r5, [r2] @ Load r5 with signed
2 @ half-word at the address in r2
3 strb r1, [r9, #4] @ Store the byte in r1 at
4 @ the address (r9 + 4)
5 ldr r7, [r3, r2]! @ Load r5 with word at the
6 @ address (r3 + r2), then
7 @ store the address in r3



Load/Store Examples

1 ldrh r9, [r2, #2]! @ Load r9 with halfword at the
2 @ address (r2 + 2), then store
3 @ the address in r2
4 ldrsh r5, [r2] @ Load r5 with signed
5 @ half-word at the address in r2
6 strb r1, [r9, #4] @ Store the byte in r1 at
7 @ the address (r9 + 4)
8 ldr r7, [r3, r2]! @ Load r7 with word at the
9 @ address (r3 + r2), then

10 @ store the address in r3
11 ldrh r9, [r2, #2]! @ Load r9 with halfword at the
12 @ address (r2 + 2), then store
13 @ the address in r2
14 ldr r7, [r3], #4 @ Load r7 with word at the
15 @ address in r3 then increment
16 @ r3 by 4



Load/Store Multiple Registers

These instructions are used to store registers on the stack, and for copying blocks of
data. There are four variants for the LDM and STM instructions, and each variant
has two equivalent names.

Operations:
LDM / STM Load/Store Multiple Registers

Syntax:
LDM|STM{<variant>} Rd{!}, {<list>}ˆ

The trailing ˆ can only be used by operating system code.

<variant> is chosen from the following table:

Block Copy Stack

IA Increment After EA Empty Ascending
IB Increment Before FA Full Ascending
DA Decrement After ED Empty Descending
DB Decrement Before FD Full Descending



Load/Store Multiple Registers (Continued)

The C compiler always uses the stmfd and ldmfd versions for the stack.

Examples

1 stmfd sp!,{r4-r7,fp,lr}@ store r4, r5, r6, r7, r11, and
2 @ r14 on the stack, and store the
3 @ new stack pointer in sp
4 ldmfd sp!,{r4-r7,fp,lr}@ load r4, r5, r6, r7, r11, and
5 @ r14 from the stack, and store
6 @ the new stack pointer in sp
7 stmib r9!,{r0-r7} @ Store 8 registers at the
8 @ location pointed to by r9, and
9 @ increment r9 BEFORE each store.

10 @ After executing, r9 will point
11 @ to the last item stored.
12 ldmia r4,{r0,r2,r3} @ Load r0, r2, and r3 at the
13 @ location pointed to by r4 and
14 @ increment the address AFTER
15 @ each store. After executing, r4
16 @ will contain its original value.



Block Copy Example

1 .data
2 source: .word 12
3 .word 23
4 .word 43
5 .word 33
6 .word 12
7 .word 23
8 .word 6
9 .word 13

10 dest: .skip 32 ...

1 stmfd sp!{r0-r9} @ push r0...r9 to the stack
2 ldr r8,=source @ load address of source
3 ldr r9,=dest @ load address of destination
4 ldmia r8,{r0-r7} @ load eight words from source
5 stmia r9,{r0-r7} @ store them in destination
6 ldmfd sp!{r0-r9} @ restore contents of r0...r9



Atomic Load-Store

Multiprogramming and threading require the ability to set and test values
atomically. These instructions are used by the Operating System and/or threading
libraries to guarantee mutual exclusion.

Operations:
SWP Load a word and store a word in one atomic operation.
SWPB Load a byte and store a byte in one atomic operation.

Syntax:
SWP{<cond>}{B} Rd, Rm, [Rn]

Example

1 swpeqb r1, r4, [r3] @ if (EQ) then load r1 with byte
2 @ at address in r3 and store byte
3 @ in r4 at address in r3

Note: SWP and SWPB are deprecated in favor of LDREX and STREX.



Mutual Exclusion - New Method
Exclusive load (ldrex) reads data from memory, tagging the memory address at the
same time. Exclusive store (strex) stores data to memory, but only if the tag is still
valid. Every memory access to the same address between ldrex and strex will
invalidate the tag. This provides mutual exclusion on multiprocessor systems.

Operations:
LDREX Load register from memory and tag the memory address
STREX Store register in memory if tag is valid, and report success

Syntax:
LDREX|STREX{<cond>}{{S}<size>} Rd, <address>
Example

1 ldr r12, =sem @ preload semaphore address
2 ldr r1, =LOCKED @ preload "locked" value
3 spin_lock:
4 ldrex r0, [r12] @ load semaphore value
5 cmp r0, r1 @ if semaphore is not locked
6 strexne r0, r1, [r12] @ try to claim
7 cmpne r0, #1 @ and check success
8 beq spin_lock @ retry if claiming failed or
9 @ it was already locked.



Branch Instructions

Operations:
B load pc with new address (branch)
BL Save pc in lr, then load pc with new address (branch and link)

Syntax:
B{L}{<cond>} <target_address>
Example

1 mov r4, #10 @ load 10 into r4
2 loop_a:
3 mov r0, #1 @ fd -> stdout
4 ldr r1, =msg @ buf -> msg
5 ldr r2, =len @ count -> len(msg)
6 mov r7, #4 @ write is syscall #4
7 swi #0 @ invoke syscall
8 subs r4, #1 @ decrement loop counter
9 bne loop_a @ repeat until loop counter is zero


	Introduction
	Load/Store Instructions
	Branch Instructions

